If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5g^2+5g-7=0
a = 5; b = 5; c = -7;
Δ = b2-4ac
Δ = 52-4·5·(-7)
Δ = 165
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{165}}{2*5}=\frac{-5-\sqrt{165}}{10} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{165}}{2*5}=\frac{-5+\sqrt{165}}{10} $
| 10=n/5=-4 | | 6x+5x=154 | | x+3/4=-3/8 | | 10x^2+25x+1=0 | | 8/9=x+5 | | -7/8+v=1/4 | | 5-2x-(1-2x)=4(x-3)+12 | | -2/5=w-3 | | -2x^2=6x-8 | | 48w-36=0 | | -5-7k=-19 | | (3b-4)6=3(b-2) | | 2^3n*5^3n=0 | | 2(4x-6)=5x-(2x+3) | | (2x-6)(2x+6)=0 | | 3x2+4x-4=4x-1 | | 25t-4t^2=0 | | 10^3n=0 | | 62=5y+12 | | -4.5(r-8.9)=12.6 | | 20-3y=-18 | | 40÷8=n | | 8/230*x-2=x | | 1/4x+1/10=3/20x-7/10 | | -3(2x+10)=30 | | 2x+0,5x-2=0,25x+2-0,25x | | 2/3(r-7=-2 | | 50x+80=40x+110 | | 3.2x-28+1.4=0.2x+2+0.4x | | 4x-60=30 | | X-17+x=x+13 | | 20x-400=30x-150 |